Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis.

Identifieur interne : 000024 ( Main/Exploration ); précédent : 000023; suivant : 000025

Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis.

Auteurs : Michael Liebthal [Allemagne] ; Johannes Schuetze [Allemagne] ; Anna Dreyer [Allemagne] ; Hans-Peter Mock [Allemagne] ; Karl-Josef Dietz [Allemagne]

Source :

RBID : pubmed:32545358

Abstract

2-Cysteine peroxiredoxins (2-CysPRX) are highly abundant thiol peroxidases in chloroplasts and play key roles in reactive oxygen species (ROS) defense and redox signaling. Peroxide-dependent oxidation of cysteines induces conformational changes that alter the ability for protein-protein interactions. For regeneration, 2-CysPRXs withdraw electrons from thioredoxins (TRXs) and participate in redox-dependent regulation by affecting the redox state of TRX-dependent targets, for example, in chloroplast metabolism. This work explores the redox conformation-specific 2-CysPRX interactome using an affinity-based pull down with recombinant variants arrested in specific quaternary conformations. This allowed us to address a critical and poorly explored aspect of the redox-regulatory network and showed that the interaction of TRXs, their interaction partners, and 2-CysPRX occur under contrasting redox conditions. A set of 178 chloroplast proteins were identified from leaf proteins and included proteins with functions in photosynthesis, carbohydrate, fatty acid and amino acid metabolism, and defense. These processes are known to be deregulated in plants devoid of 2-CysPRX. Selected enzymes like LIPOXYGENASE 2, CHLOROPLAST PROTEIN 12-1, CHORISMATE SYNTHASE, ß-CARBONIC ANHYDRASE, and FERREDOXIN-dependent GLUTAMATE SYNTHASE 1 were subjected to far Western, isothermal titration calorimetry, and enzyme assays for validation. The pull down fractions frequently contained TRXs as well as their target proteins, for example, FRUCTOSE-1,6-BISPHOSPHATASE and MALATE DEHYDROGENASE. The difference between TRX-dependent indirect interactions of TRX targets and 2-CysPRX and direct 2-CysPRX binding is hypothesized to be related to quaternary structure formation, where 2-CysPRX oligomers function as scaffold for complex formation, whereas TRX oxidase activity of 2-CysPRX controls the redox state of TRX-related enzyme activity.

DOI: 10.3390/antiox9060515
PubMed: 32545358
PubMed Central: PMC7346168


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis.</title>
<author>
<name sortKey="Liebthal, Michael" sort="Liebthal, Michael" uniqKey="Liebthal M" first="Michael" last="Liebthal">Michael Liebthal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schuetze, Johannes" sort="Schuetze, Johannes" uniqKey="Schuetze J" first="Johannes" last="Schuetze">Johannes Schuetze</name>
<affiliation wicri:level="1">
<nlm:affiliation>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland</wicri:regionArea>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>D-06466 Seeland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dreyer, Anna" sort="Dreyer, Anna" uniqKey="Dreyer A" first="Anna" last="Dreyer">Anna Dreyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mock, Hans Peter" sort="Mock, Hans Peter" uniqKey="Mock H" first="Hans-Peter" last="Mock">Hans-Peter Mock</name>
<affiliation wicri:level="1">
<nlm:affiliation>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland</wicri:regionArea>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>D-06466 Seeland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32545358</idno>
<idno type="pmid">32545358</idno>
<idno type="doi">10.3390/antiox9060515</idno>
<idno type="pmc">PMC7346168</idno>
<idno type="wicri:Area/Main/Corpus">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000037</idno>
<idno type="wicri:Area/Main/Curation">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000037</idno>
<idno type="wicri:Area/Main/Exploration">000037</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis.</title>
<author>
<name sortKey="Liebthal, Michael" sort="Liebthal, Michael" uniqKey="Liebthal M" first="Michael" last="Liebthal">Michael Liebthal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schuetze, Johannes" sort="Schuetze, Johannes" uniqKey="Schuetze J" first="Johannes" last="Schuetze">Johannes Schuetze</name>
<affiliation wicri:level="1">
<nlm:affiliation>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland</wicri:regionArea>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>D-06466 Seeland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dreyer, Anna" sort="Dreyer, Anna" uniqKey="Dreyer A" first="Anna" last="Dreyer">Anna Dreyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mock, Hans Peter" sort="Mock, Hans Peter" uniqKey="Mock H" first="Hans-Peter" last="Mock">Hans-Peter Mock</name>
<affiliation wicri:level="1">
<nlm:affiliation>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland</wicri:regionArea>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>06466 Seeland</wicri:noRegion>
<wicri:noRegion>D-06466 Seeland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants (Basel, Switzerland)</title>
<idno type="ISSN">2076-3921</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">2-Cysteine peroxiredoxins (2-CysPRX) are highly abundant thiol peroxidases in chloroplasts and play key roles in reactive oxygen species (ROS) defense and redox signaling. Peroxide-dependent oxidation of cysteines induces conformational changes that alter the ability for protein-protein interactions. For regeneration, 2-CysPRXs withdraw electrons from thioredoxins (TRXs) and participate in redox-dependent regulation by affecting the redox state of TRX-dependent targets, for example, in chloroplast metabolism. This work explores the redox conformation-specific 2-CysPRX interactome using an affinity-based pull down with recombinant variants arrested in specific quaternary conformations. This allowed us to address a critical and poorly explored aspect of the redox-regulatory network and showed that the interaction of TRXs, their interaction partners, and 2-CysPRX occur under contrasting redox conditions. A set of 178 chloroplast proteins were identified from leaf proteins and included proteins with functions in photosynthesis, carbohydrate, fatty acid and amino acid metabolism, and defense. These processes are known to be deregulated in plants devoid of 2-CysPRX. Selected enzymes like LIPOXYGENASE 2, CHLOROPLAST PROTEIN 12-1, CHORISMATE SYNTHASE, ß-CARBONIC ANHYDRASE, and FERREDOXIN-dependent GLUTAMATE SYNTHASE 1 were subjected to far Western, isothermal titration calorimetry, and enzyme assays for validation. The pull down fractions frequently contained TRXs as well as their target proteins, for example, FRUCTOSE-1,6-BISPHOSPHATASE and MALATE DEHYDROGENASE. The difference between TRX-dependent indirect interactions of TRX targets and 2-CysPRX and direct 2-CysPRX binding is hypothesized to be related to quaternary structure formation, where 2-CysPRX oligomers function as scaffold for complex formation, whereas TRX oxidase activity of 2-CysPRX controls the redox state of TRX-related enzyme activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32545358</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-3921</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants (Basel, Switzerland)</Title>
<ISOAbbreviation>Antioxidants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E515</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/antiox9060515</ELocationID>
<Abstract>
<AbstractText>2-Cysteine peroxiredoxins (2-CysPRX) are highly abundant thiol peroxidases in chloroplasts and play key roles in reactive oxygen species (ROS) defense and redox signaling. Peroxide-dependent oxidation of cysteines induces conformational changes that alter the ability for protein-protein interactions. For regeneration, 2-CysPRXs withdraw electrons from thioredoxins (TRXs) and participate in redox-dependent regulation by affecting the redox state of TRX-dependent targets, for example, in chloroplast metabolism. This work explores the redox conformation-specific 2-CysPRX interactome using an affinity-based pull down with recombinant variants arrested in specific quaternary conformations. This allowed us to address a critical and poorly explored aspect of the redox-regulatory network and showed that the interaction of TRXs, their interaction partners, and 2-CysPRX occur under contrasting redox conditions. A set of 178 chloroplast proteins were identified from leaf proteins and included proteins with functions in photosynthesis, carbohydrate, fatty acid and amino acid metabolism, and defense. These processes are known to be deregulated in plants devoid of 2-CysPRX. Selected enzymes like LIPOXYGENASE 2, CHLOROPLAST PROTEIN 12-1, CHORISMATE SYNTHASE, ß-CARBONIC ANHYDRASE, and FERREDOXIN-dependent GLUTAMATE SYNTHASE 1 were subjected to far Western, isothermal titration calorimetry, and enzyme assays for validation. The pull down fractions frequently contained TRXs as well as their target proteins, for example, FRUCTOSE-1,6-BISPHOSPHATASE and MALATE DEHYDROGENASE. The difference between TRX-dependent indirect interactions of TRX targets and 2-CysPRX and direct 2-CysPRX binding is hypothesized to be related to quaternary structure formation, where 2-CysPRX oligomers function as scaffold for complex formation, whereas TRX oxidase activity of 2-CysPRX controls the redox state of TRX-related enzyme activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liebthal</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schuetze</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dreyer</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mock</LastName>
<ForeName>Hans-Peter</ForeName>
<Initials>HP</Initials>
<AffiliationInfo>
<Affiliation>Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dietz</LastName>
<ForeName>Karl-Josef</ForeName>
<Initials>KJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DI 346/17&18; MO 479/11-2</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Antioxidants (Basel)</MedlineTA>
<NlmUniqueID>101668981</NlmUniqueID>
<ISSNLinking>2076-3921</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">2-cysteine peroxiredoxin</Keyword>
<Keyword MajorTopicYN="N">interactome</Keyword>
<Keyword MajorTopicYN="N">proteomics</Keyword>
<Keyword MajorTopicYN="N">redox</Keyword>
<Keyword MajorTopicYN="N">thiol</Keyword>
<Keyword MajorTopicYN="N">thioredoxin</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32545358</ArticleId>
<ArticleId IdType="pii">antiox9060515</ArticleId>
<ArticleId IdType="doi">10.3390/antiox9060515</ArticleId>
<ArticleId IdType="pmc">PMC7346168</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biosyst. 2015 Apr;11(4):1134-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1592-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25667319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Mar 11;70(5):1483-1495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30690555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 21;9:1344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30298078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20984-20990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31570616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 30;5:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24523724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):840-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Mar 1;28(7):609-624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28594234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Nov;252:30-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27717466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 8;287(24):20689-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Oct 12;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30311601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Apr;171(4):2049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2649484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2020 Jul;145(1):31-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31768716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23671085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18429942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Aug;64(11):3483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23828546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jul;57(7):1415-1425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26872837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Apr 5;263(10):4704-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2895105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21410714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Sep;91(6):995-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28644561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Feb 11;467(2-3):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10675547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Jan;5(1):114-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Nov 26;69(22):5341-5354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30169821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Jan;12(1):87-93; sup pp 1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jul;10(7):1235-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Jun;31(3):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8790288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):980-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8041738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2016 Jan;39(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Apr 13;355(3):722-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 22;288(47):33620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1948 Oct;176(1):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18886152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Nov;2(6):1273-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Liebthal, Michael" sort="Liebthal, Michael" uniqKey="Liebthal M" first="Michael" last="Liebthal">Michael Liebthal</name>
</noRegion>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
<name sortKey="Dreyer, Anna" sort="Dreyer, Anna" uniqKey="Dreyer A" first="Anna" last="Dreyer">Anna Dreyer</name>
<name sortKey="Mock, Hans Peter" sort="Mock, Hans Peter" uniqKey="Mock H" first="Hans-Peter" last="Mock">Hans-Peter Mock</name>
<name sortKey="Schuetze, Johannes" sort="Schuetze, Johannes" uniqKey="Schuetze J" first="Johannes" last="Schuetze">Johannes Schuetze</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32545358
   |texte=   Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32545358" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020